澳门现金网
您目前的位置: 首頁» 師資隊伍» 外聘教授

曾小剛

美國卡耐基梅隆大學博士,北京市特聘教授  。

科研方向

固體、流體及物體熱傳導的線性和非線性理論分析及有限元模擬計算

固體、結構與流體的接觸問題的數值求解技術

複合材料,粘彈塑性材料,儒變彈塑性材料 ,記憶材料,非線性分析及數值求解技術

結構或物體的非破壞性探傷及逆問題的非線性分析和計算

運籌學數值求解技術在交通工程中的應用,大型交通網絡優化的數值方法

仿生和生物進化算法在工程中的應用

科研項目

已主持完成了下列科研發展項目

§     主持開發了大型非線性有限元通用計算機程序的核心部分 ,包括固體,流體,熱傳導及各類結構單元類型 ,各類線性和非線性材料模型。 美國及歐洲現有超過50000機械和結構工程用戶使用該程序的商用軟件。

§     發展和完成了非線性計算機程序用於大型公共交通網絡系統的優化設計包括公交車線路和車站的位置設計  ,車輛的線路分配及車輛時刻表。

§     開發基於統計學和逆問題的數值優化方法估算或求解公交系統的乘客來源地及目的地

§     爲美國PPG玻璃公司主持開發非線性數值方法及相應的計算機程序用於分析和模擬汽車前擋風玻璃的熱成型製造過程(熱彈塑性儒變材料)。

§     研發熱彈塑性流晶材料模型並將該材料模型裝入ANSYS 大型通用計算機程序 。

§     主持研發混凝土彈塑性帶裂紋材料模型

§     冷軋鋼成型過程的穩定和敏感性分析 ,計算機模擬,優化設計及數值方法

§     心血管內擴張彈簧的有限元分析和優化設計(非線性彈性記憶性材料)

§     重型車量的有限元分析和優化設計

§     火星機器人結構的有限元分析和優化設計  

職業諮詢 

Red Zone Robotics Inc., 1990. 

§     有限元分析和設計在覈圬染環境下的鋼結構軌道系統用於機器人搬運核廢料 

佛羅里達國際大學土木及環境工程系, 1993.

§     物體的非破壞性探傷及反問題非線性分析和計算

§     工程結構的形狀優化 

卡耐基梅隆大學計算機现金网機器人研究中心, 1994. 

§     火星機器人結構的有限元分析和優化設計(美國航天局科研項目) 

佛羅里達國際大學機械工程系, 1996. 

§     重型車量的有限元分析和優化設計(美國陸軍科研項目)

§     心血管內擴張彈簧的有限元分析和優化設計(Johnson and Johnson Inc. 科研項目)  

现金网論文 (现金网雜誌)

1.      Fang Zhao and Xiaogang Zeng, “Optimization of User and Operator Cost for Large-scale Transit Network”, ASCE Journal of Transportation Engineering, Vol. 133, No. 4, April 2007 April 2007.

2.      F. Zhao and X. Zeng, “Optimization of Transit Route Network, Vehicle Headway and   Timetables for Large-scale Transit Network”, submit to European Journal of Operational Research, 2005, accepted.

3.      F. Zhao and X. Zeng, “Optimization of Transit Network Layout and Headway with a Combined Genetic Algorithm and Simulated Annealing Method”, Journal of Engineering Optimization, Vol. 38, No 6, September 2006, pp. 701-722.

4.      Fang Zhao and Xiaogang Zeng, “Simulated Annealing–Genetic Algorithm for Transit Network Optimization”, ASCE Journal of Computing in Civil Engineering, Vol. 20, No 1, January/February 2006, pp. 57-68.

5.      Sushil J. Louis, Fang Zhao and Xiaogang Zeng, “Flaw Detection and Configuration with Genetic Algorithm,” in Evolutionary Algorithms in Engineering Applications, D. Dasgupta and Z. Michalewicz (editor), Springer-Verlag, March 1997.  

6.      Fang Zhao and Xiaogang Zeng, "An Energy-Based Macro-Element Method via a Coupled Finite Element and Boundary Integral Formulation", Computers and Structures, Vol. 56, No. 5, pp. 813-824, 1995. 

7.      Xiaogang Zeng and Fang Zhao, "Integral Equation Method Via Domain Decomposition for Scattering Problems", International Journal of Applied Mechanics, Vol. 62, pp. 186-192, March 1995. 

8.      J. Bielak, R. C. MacCamy, and X. Zeng, “Stable Coupling Method for Interface Scattering Problems by Combined Integral Equations and Finite Elements,” Journal of Computational Physics, Vol. 119, pp. 374-384, 1995. 

9.      Xiaogang Zeng and Fang Zhao, "A Coupled FE and Boundary Integral Equation Method Based on Exterior Domain Decomposition for Fluid-Structure Interaction Problems", International Journal of Solids and Structures, Vol. 31, No. 8, pp. 1047-1061, 1994. 

10.  X. Zeng and J. Bielak, "Stability Assessment of a Unified Variational Boundary Integral Method Applicable to Thin Scatterers and Scatterers with Corners," Computer Method in Applied Mechanics and Engineering, 111, pp. 305-321, 1994. 

11.  X. Zeng and J. Bielak, "Exterior Stable Domain Segmentation Integral Equation Method for Scattering Problems," International Journal for Numerical Methods in Engineering, Vol. 37, pp. 777-792, 1994. 

12.  X. Zeng and J. Bielak, “Stable Symmetric Finite Element – Boundary Integral Coupling Methods for Fluid–Structure Interface Problems”, International Journal of Engineering Analysis with Boundary Elements, Vol. 15, pp. 79-91, 1995. 

13.  X. Zeng, J. Bielak, and R. C. MacCamy, “Unified Symmetric Finite Element and Boundary Integral Variational Coupling Methods for Fluid-Structure Interaction,” Numerical Methods for Partial Differential Equations, Vol. 8, pp. 451-467, 1992. 

14.  X. Zeng, J. Bielak and R. C. MacCamy, “Stable Variational Coupling Method for Fluid-Structure Interaction in Semi-Infinite Media,” ASME Journal of Vibration and Acoustics, Vol. 114, pp. 387-396, 1992. 

15.  X. Zeng, L. F. Kallivokas, and J. Bielak, “Stable Localized Symmetric Integral Equation Method for Acoustic Scattering Problems,” Journal of Acoustics Society of America, Vol. 91 pp. 2510-2518, 1992. 

16.  X. Zeng, L. F. Kallivokas, and J. Bielak, “A Symmetric Variational Finite Element-Boundary Integral Equation Coupling Method,” in Computers & Structures, Vol. 46, No. 6, pp. 995-1000, 1993. 

17.  Zeng, X., and S. Saigal, "An Inverse Formulation with Boundary Elements," ASME Journal of Applied Mechanics, Vol. 54, No. 4, pp. 835-840, December 1992. 

18.  Zeng, X., and S. Saigal, "A Fourier Expansion Based Particular Integral Approach for Non-Boundary Loadings in Boundary Element Method,” Communications in Applied Numerical Methods, Vol. 7, pp. 453-464, 1991. 

會議論文

1.      Fang Zhao, Sushil Louis, and Xiaogang Zeng., "A Genetic Algorithm for Inverse Problems of Flaw Detection", Proceedings of the 4th Golden West International Conference on Intelligent Systems, San Francisco, CA, June 12-14, 1995. 

2.      Hopkins, D.A., S. Saigal, and X. Zeng, "Computational Micromechanics of Woven Composites," ASME AMD-118, Mechanics of Composites at Elevated and Cryogenic Temperatures, S. Singhal and C. Herakovich (editors), May 1991. 

3.      Fang Zhao, Xiaogang Zeng, and Sushil Louis, "Genetic Algorithms for Inverse Problems," Proceedings of ASCE 4th Congress on Computing in Civil Engineering, Philadelphia, PA, June 16-18, 1997. 

4.      Fang Zhao and Xiaogang Zeng, "A Flexible Structural Analysis Method for Computer-Aided Preliminary Design", Proc. First Congress on Computing in Civil Engineering, Washington, D.C., June 20-22, 1994.  Also in Proc. of 1993 ASCE South Florida Section Annual Meeting, Naples, FL, September 1993. 

5.      H. Yi, X. Zeng, And J. Bielak, Symmetric Mixed BEM for Elasto-static Problems With Cracks Using Non-Singular Elements, USACM, Proceedings of the Fifth US National Congress on Computational Mechanics, 1999. 

工程科研項目報告

1.      Xiaogang Zeng, Loukas F. Kallivokas, and Jacobo Bielak, “A Symmetric Variational Finite Element-Boundary Integral Equation Coupling Method”, Research Report R-92-203, Dept. of Civil Engineering, Carnegie Mellon University, 1992. 

2.      Xiaogang Zeng, “Stable symmetric FEM-BEM coupling methods for fluid-structure interface problems with applications”, Ph.D. Thesis, Department of Civil Engineering, Carnegie Mellon University, 1992. 

3.      Jacobo Bielak, Richard C. MacCamy and Xiaogang Zeng, “Stable coupling method for interface scattering problems”, Research Report R-91-199, Dept. of Civil Engineering, Carnegie Mellon University, 1991. 

4.      Xiaogang Zeng, Jacobo Bielak, and Richard C. MacCamy, “Symmetric Finite Element and Boundary Integral Variational Coupling for Fluid-Structure Interaction in Semi-Infinite Media”, Research Report R-91-198, Dept. of Civil Engineering, Carnegie Mellon University, 1991. 

5.      Xiaogang Zeng, Jacobo Bielak, and Richard C. MacCamy, “Unified Symmetric Finite Element and Boundary Integral Variational Coupling for Fluid-Structure Interaction”,Research Report R-90-195, Dept. of Civil Engineering, Carnegie Mellon University, 1990. 

6.      Xiaogang Zeng and Jacobo Bielak, “Development of 3D Finite Element for the Analysis of Tempering stresses for Viscoeelastic Materials with Structural Relaxation”. Research Report R-89-180, Dept. of Civil Engineering, Carnegie-Mellon University, 1989. 

7.      Xiaogang Zeng, “Analysis of Beam-Columns with Non-Linear Lateral Supports”, M.S. Thesis, School of Civil Engineering, Georgia Institute of Technology, 1988.  

8.      Xiaogang Zeng, “A New Incremental Analysis Method for Finite deformation Solids”, M.S. Thesis, Department of Applied Mechanics, Beijing Institute of Technology, 1984.